PENICILLIN-CEPHALOSPORIN CONVERSION X. 1 NEW SYNTHESIS OF DITHIOAZETIDINONES FROM THIAZOLINE-AZETIDINONES

Sigeru Torii,* Hideo Tanaka, Takashi Siroi, and Michio Sasaoka Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700, Japan

<u>ABSTRACT</u>: New ring-opening reaction of thiazoline-azetidinones $\underline{1}$ to dithio-azetidinones $\underline{2}$ was achieved with 2-benzothiazolyl disulfide in aqueous acidic media and its potentiality for the preparation of a variety of cephalosporins $\underline{3}$ from various thiazoline-azetidinones 1 is demonstrated.

Recently, we have reported the hydrolytic ring-opening of thiazoline-azetidinones $\underline{1}$ derived from penicillins to dithioazetidinones $\underline{2}$ (R¹ = PhCH₂ and PhOCH₂; Z = Cl) by the reaction with sulfenyl chlorides (ArSCl: Ar = aryl and hetero-aromatic groups) in dioxane-H₂O. These disulfides $\underline{2}$ were subsequently cyclized to 3'-thiosubstituted cephalosporins $\underline{3}$ (Z = SAr) by treatment with NH₃ in N,N-dimethylformamide (DMF). This sequence is one of the most efficient and short-cut route among the penicillin-cephalosporin conversions hitherto disclosed in obtaining 3'-substituted cephalosporins. However, the procedure can not be operated on the thiazoline derivatives $\underline{1}$ which resist hydrolysis and/or possess functional groups sensitive toward sulfenyl chlorides.

We wish to report here a successful transformation of thiazoline-azetidinones $\underline{1}$ to dithioazetidinones $\underline{2}$ by using 2-benzothiazolyl disulfide ($\underline{6}$) as a new thiol-trapping agent of 4-mercaptoazetidinones $\underline{4}$ which are formed under acid-hydrolysis conditions. We also proved the wide applicability of this method by synthesizing cephalosporins $\underline{3}$ from various thiazoline-azetidinones 1.

The sulfenyl chloride promoted ring-opening of $\underline{1}$ into $\underline{2}$ seems to proceed stepwise, first hydrolysis of the thiazoline ring to thiol $\underline{4}$ and trapping the thiol by the sulfenyl chloride. The reaction of thiazoline $\underline{10}$ (R¹ = PhCCl₂; R² = PhCH₂; Z = Cl) with 2-benzothiazolesulfenyl chloride (BTS-Cl) in dioxane-H₂O failed and $\underline{10}$ was completely recovered intact. The similar results were obtained with other thiazoline derivatives $\underline{1p}$ -t bearing PhCH(OAc), PhOCH(SPh), PhCO, and Ph as R¹ under the same conditions. It seems that the decomposition of sulfenyl chloride (BTS-Cl) in the aqueous media proceeds before suitable amounts of thiol $\underline{4}$ are accumulated. Actually, these thiazoline derivatives $\underline{10}$ -t were stable in the aqueous media and underwent hydrolysis slowly.

In order to achieve this transformation $(1 \rightarrow 2)$ we needed a new thiol trapping agent, which must be stable under the acid hydrolysis conditions as well as labile enough to react with thiols $\underline{4}$ successively as they are formed, so as to suppress ring-opening reaction to thiazoles $\underline{5}^4$ (Scheme 2). Beside these two requirements which seem to contradict each other, the sulfenyl moieties (ArS in 2) must act as a good leaving group at the cyclization step later $(2 \rightarrow 3)$. We have found that 2-benzothiazolyl disulfide $\underline{6}$ is an excellent reagent for this purpose and many sort of thiazoline-azetidinones $\underline{1}$ reacted successfully with the disulfide $\underline{6}$ under acid-hydrolysis conditions to afford the corresponding unsymmetrical disulfides 2 (Table 1).

The experimental procedure is very simple as one mixes <u>la</u> with 1.3 equiv. of disulfide <u>6</u> in aqueous 5% HCl-THF (1/5) at room temperature for 40 min, affording <u>2a</u> in 90% yield after a short column chromatography (SiO₂, benzene-AcOEt, 8/1) (entry 1). It was a pleasant surprise that any detectable amounts of symmetrical disulfide <u>7</u> were not formed under above reaction conditions. The various type of the substituents on the β -lactam nitrogen atom were not affected under these conditions. It is especially noteworthy that carboxylic acid and hydroxyl groups are not required to be protected (entries 3 and 6). Further more, this method was applicable to the hydrolysis resistant thiazoline-azetidinones <u>lo-t</u>, $\frac{8}{2}$ <u>vide</u> <u>supra</u>, by

Table 1. Ring-opening of Thiazoline-Azetidinones with BTS-SBT

		Thiazoline-Azetidinone <u>l</u>			Conditions ^{a)}	Yield, % b)	
entry		R ¹	R ²	z ^{c)}	aq. Acid/h	<u>1->2</u>	<u>2</u> → <u>3</u>
1	a	PhCH ₂	PhCH ₂	Н	5% HCl	90	
2	b	PhCH ₂	7		5% HC1	100	
			CO,	Me	27% p-TsOH	98	
3	С	PhCH ₂	H	Н	5% HCl	100	
4	đ	PhCH ₂	PhCH ₂	Cl	5% HCl	89	742
5	е	PhCH ₂	NH		5% HCl	90	
6	f	PhCH ₂	PhCH ₂	ОН	5% HCl	65	80
7	g	PhCH ₂	PhCH ₂	OAc	5% HCl	69	84
8	h	PhCH ₂	PhCH ₂	ono ₂	5% HCl	51	73
9	i	PhCH ₂	PhCH ₂	S-TZ-Me	5% HCl	88	90
10	j	PhCH ₂	PhCH ₂	S-TZ-Ph	5% HCl	89	89
11	k	PhCH ₂	PhCH ₂	S-DZ	5% HCl	92	86
12	1	PhCH ₂	PhCH ₂	SCSOEt	5% HCl	90	82
13	m	PhCH ₂	PhCH ₂	SCSNMe ₂	5% HCl	93	85
14	n	PhOCH ₂	PhCH ₂	H	10% HC10 ₄	94	
15	0	PhCCl ₂	PhCH ₂	C1	20% HC10 ₄ /24	64	
16	р	PhCC1 ₂	PhCH ₂	S-TZ-Me	20% HC10 ₄ /70	65	81
17	q	PhCH (OAc)	PhCH ₂	Н	5% HC1/2	65	
18	r	PhOCH (SPh)	PhCH ₂	Cl	20% HClO ₄ /116	80	
19	s	PhCO	PhCH ₂	Cl	5% HC1/120	83	
20	t	Ph	N Co ₂	\ Me	5% HC1/20	40 (5	52) ^{đ)}

d) Recovered 1t

employing prolonged reaction time to give the corresponding dithioazetidinones 2 (entries 15-20).

The dithioazetidinones $\underline{2}$ obtained by this method were cyclized smoothly by treatment with NH $_3$ in DMF at -35 °C to give the desired 3'-substituted cephalosporins $\underline{3}$. These cephalosporins $\underline{3}$ can be converted into clinically important antibiotics by manipulation of the C(7)-amide groups as well as deprotection of the esters.

References

- Part IX: submitted for publication; Part VIII: S. Torii, H. Tanaka, T. Siroi, and M. Sasaoka, J. Org. Chem., 48, 3551 (1983).
- (a) S. Torii, H. Tanaka, M. Sasaoka, M. Saitoh, T. Siroi, and J. Nokami, Tetrahedron Lett., <u>23</u>, 2495 (1982); (b) S. Torii, H. Tanaka, M. Sasaoka, N. Saitoh, T. Siroi, and J. Nokami, Bull. Soc. Chim. Belg., 91, 951 (1982).
- 3. For a review: F. A. Jung, W. R. Pilgrim, J. P. Poyser, and P. J. Siret, "Topics in Antibiotic Chemistry", Vol. 4, ed. P. G. Sammes, Ellis Harwood Limited, Chichester, 1980; Chapter 3.
- 4. The hydrolytic ring-opening of thiazoline-azetidinones to 4-mercapto-azetidinones in aqueous acidic media and subsequent trapping of the thiol group with alkyl halides, acetyl chloride, etc., have been reported. However, the latter has been operated in non-aqueous media and no attempts have been made to trap in situ the thiol moiety in the aqueous media: (a) M. Narisada, H. Onoue, M. Ohtani, F. Watanabe, T. Okada, and W. Nagata, Tetrahedron Lett., 1755 (1978); (b) J. E. Baldwin and M. A. Christie, J. C. S. Comm., 1978, 239; (c) N. F. Osbone, J. C. S. Perkin I, 1980, 150 and references cited therein.
- 5. Starting materials were recovered intact. It is not clear whether the stability of these thiazoline lo-t is due to steric or electronic reasons.
- 6. We confirmed that it took 2 days to complete the hydrolytic ring-opening of the thiazoline moieties of \underline{lo} (R¹ = PhCCl₂) in 10% HCl-THF (1/5) at room temperature.
- 7. In a preliminary experiment, we examined the reaction of various kinds of disulfides (R-SS-R) with cyclohexanethiol, resulting in the formation of a mixture of symmetrical disulfides and unsymmetrical disulfides in a ratio: 2/91 (R = BT); 10/77 (2-pyridyl); 55/44 (p-NO₂-phenyl); 73/16 (C_6Cl_5); no reaction (Ph). Details will be reported elsewhere.

$$R-SS-R + \bigcirc -SH \longrightarrow R-SS - \bigcirc + R-SH \longrightarrow \bigcirc -SS - \bigcirc$$

Compound <u>lt</u> (R¹ = Ph) was reported not to undergo hydrolytic ring-opening reaction with dialkyl azodicarboxylates: G. Franceschi, M. Foglio, P. Masi, A. Suarato, G. Palamidessi, L. Bernardi, F. Arcamone, and G. Cainelli, J. Am. Chem. Soc., <u>99</u>, 248 (1977).

(Received in Japan 21 January 1984)